Option waterpointeres a sub-cashe Cannot a W. 19451 W. 194515 Z. 1914145

DS3 Design and Simulation of DART Test Environment

Dr. Gerard Borello, InterAC www.interac.fr

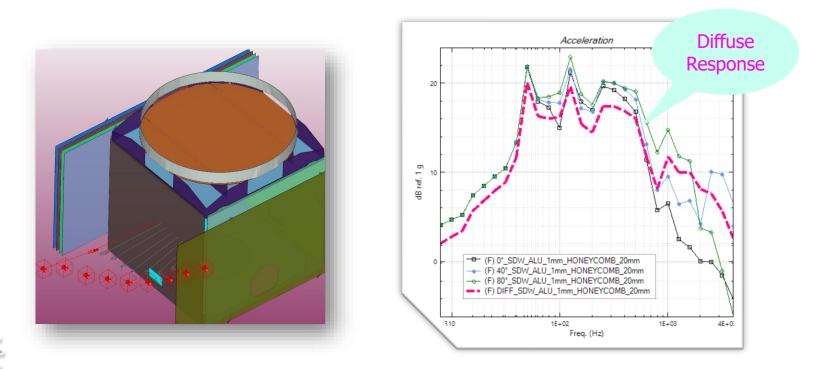
DART Test System

DART is an acronym for **Direct Acoustic Radiation Transfer**

- It refers to a specific type of acoustic qualification test of payloads, named DFAN, DFAX or DFAT in technical literature, the latter being the most popular but now registered as a trademark
- DART is an alternate solution to reverberant chamber test for acoustic qualification of spacecraft to random noise generated at launcher lift-off
- DART hardware is made of a swarm of high-powered loudspeakers located at a distance from the payload test specimen as sketched in here below picture

Benefits and Risks of DART Tests

- Benefits:
 - Lowering qualification cost
 - Tests performed on Payload integration site avoid transportation to an external test center equipped with reverberant chamber
 - Accurate control of Sound Pressure Levels (SPL) at set of predefined microphone locations


Risks:

- SPL outside controlled points specific to DART Setup
 - Phase interference due to radiation of correlated speakers
 - Acoustic wave distribution differs classical reverberant chamber to which payload structural response is sensitive (see next slide)
- Loss of the Universality of Test Responses
 - Extra variance in acoustic qualification: Expected vibrational difference between a given DART configuration and reference levels provided by reverberant chamber tests
 - Required update of past numerical/experimental expertise for deriving actual lift-off qualification levels of spacecraft

Sensitivity of Sandwich Wall to Incidence

- RMS acceleration is predicted here with SEA+ software under acoustic plane wave incidence (0°, 40°, 80°) and Diffuse in 1/3rd octave bands for a payload sandwich (alu skin 1 mm, core 20 mm)
- Potential variation of RMS acceleration lies in between 2 to 10 dB from diffuse field prediction

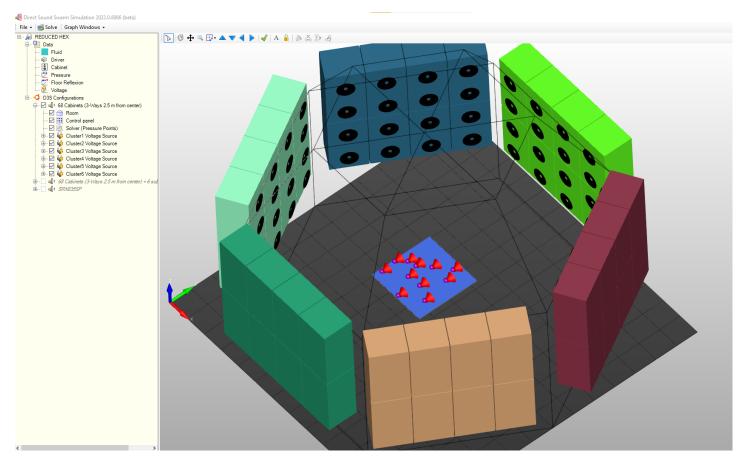
DS3 Software for DART Risk Analysis

Numerical Simulation of DART Sound field at any location

- **Direct Solve** from input spectral voltages to local SPL
- Inverse Solve from specified SPL to required input spectral voltages to be applied to the various loudspeakers

Prediction of interferential acoustic field (include reflections from the ground)

- Numerical Analysis of Propagating Waves by the DART Swarm
 - 2D-FFT of SPL distribution on reference movable panel surface
 - Export as incident wave distribution to analyze vibrational response to DART sound field


Design and Simulation of DART Systems

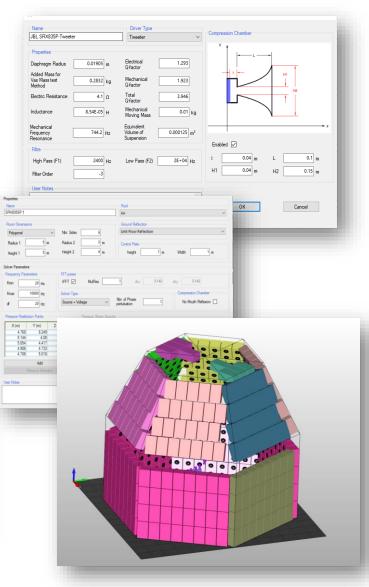
- DS3 has two major capabilities: **Design** & **Simulation**
- Design for building your own DART system
 - DS3 simulates the electromagnetic behavior of swarm of speakers from input voltage to delivered acoustic environment
 - Loudspeakers are modeled in DS3 by their Thiele's parameters, easy to retrieve from simple electro-magnetic impedance measurement
 - Any suitable speaker on market place can be used in DS3 to build a model of the DART setup

DS3 Software User Interface

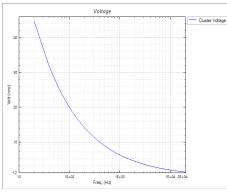
- Windows App, 3D GUI and relational database for object properties accessed through tree-browser.
- Various configurations may be created from Browser.

Design and Simulation of DART Systems: the DS3 Model

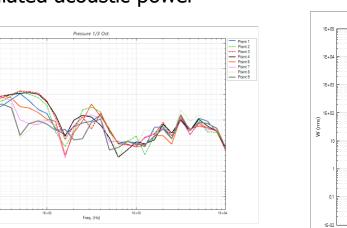
Simulation for Analyzing Field Response

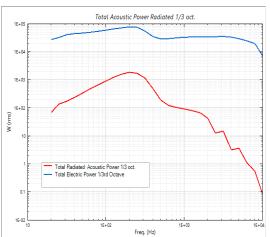

- Quick DS3 setup modeling by arranging speaker drivers in cabinet cluster
- **Prediction of all system parameters** such as:
 - Electric consumption required for reaching given SPL
 - Voltage and current spectra of all speakers
 - Velocity spectra of speaker diaphragm levels at controlled points for a set of discrete controllers (independent random signals driving the sub-set of cabinets)
 - Radiated power from both DS3 cabinet swarm and from individual cabinets
 - Dense mapping of SPL on a movable rectangle associated to 2D-FFT
 - Impulse audio responses in time domain

Building Models in the 3D-GUI of DS3


- Defining Electro-magnetic drivers
 - Input of their Thiele's Parameters
 - Adding compression chamber and horn to some drivers
- Creating cabinets containing required drivers
- Associating Cabinets to control voltage signals
- Automated generation of DART-type configuration from parametric geometry

Nane JRL SP0430P		Tane (AL SRX335P		Name [JEL SRX335P	
la		Sau		Sae	
ieight (R) 0.904 m Wildh (Y) 0.54	m Depth (Z) 0.475 m	Height (X) 0.584 m Width (Y)	0.544 m Depth (2) 0.476 m	Height (10) 0.954 m Width (1) 0.544 m Depth (2)	0.476
Dives		Dives		Dives	
JBL SRXESSP-Wisofer (Free)	¥	IBL SRX83SP-Medium	v	JBL SRI835F-Tweeter	
Driver Type: Woofer Back Raid Volume 0.1 m ³	o	Driver Type: Medum Back Plad Volume 0.1 m ¹	0	Driver Type: Tweeter Back Ruid Volume 0.1 m ²	
Dever Gener Fluidan X 0.279 = Y 0.222 = Z 0 = Add Dever Resource Dever	0	Drue Cester Frador X 6477 m Z 4 Y 04272 m Z 4 Z 0 m Z 4 Add Druer Rescue Druer		Douc for the future X 640 Z 0 MID Draw Receip Draw	
Char Moton	Canoel	User Notes	OK Canoal	User Notes	Cancel



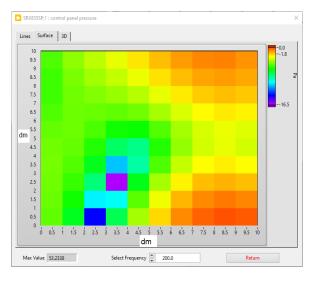

Analyzing DS3 Spectral Outputs

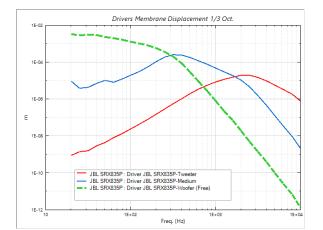
Electric Voltage Input

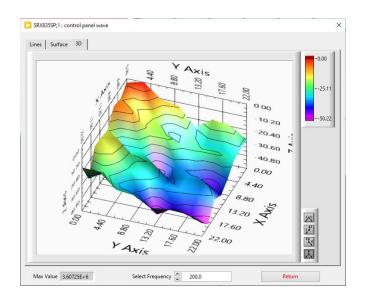
 SPL at controlled nodes, electric power and radiated acoustic power

DS3 for DART System Design & Simulation - InterAC

Spacecraft Reference Panel

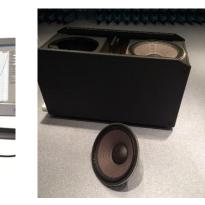

Analyzing DS3 Spectral and 2D-FFT Outputs

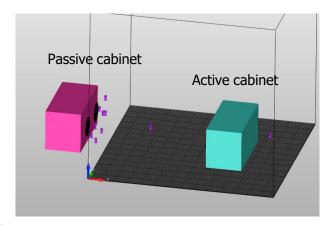

Motion of driver diaphragms

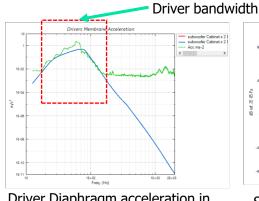

- RMS and 1/3rd octave spectra of
 - displacement
 - velocity
 - acceleration of diaphragms

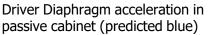
Payload Wall SPL mapping

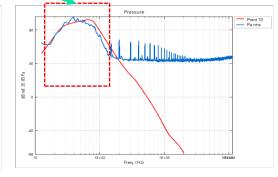
- SPL distribution for selected frequency band
- Mapping in wavenumber domain

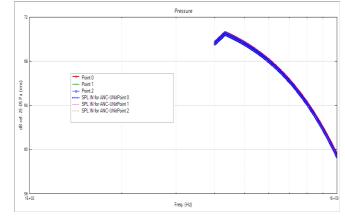


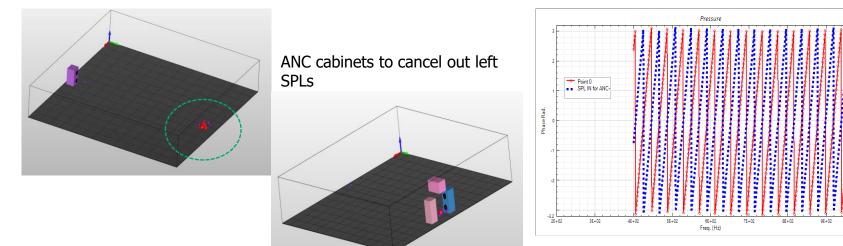





Validation of DS3 Simulation


- Test campaigns with Airbus Defense and Space using set of JBL cabinets
- For both subwoofers and 3-Way JBL cabinets
 - Identification of Thiele's parameters of related drivers (Subwoofer, Woofer, medium and tweeter)
 - Simulation of subwoofer cabinet then, 3-ways cabinet
 - Cross-comparisons of measured and predicted SPL pressure at distance, directivity and diaphragm velocity
 - Single cabinet configuration
 - Two interacting cabinets (one passive, one active)




SPL at 2 m distance from active cabinet (predicted red and measured blue)

D3S Active Noise Control (ANC) Capabilities

- SPL is simulated at a set of distant points from a cabinet
- Voltage state at set of extra cabinets is identified by **ANC solver** for generating anti-sound at the set of previous distant points (same SPL but out-of-phase with SPL to cancel)

RMS moduli of Source and Anti-source signals

Phase or Source and Anti-source signals

Generation of signal to cancel out

Synthesis

- DS3 for DART Design & Simulation is an InterAC software
 - Calculation/test comparisons are based on measurements carried out in partnership with Airbus Defense and Space (ADS)
- For DART system modeling
 - from elementary electro-magnetic drivers parameters (Thiele's parameters)
 - by including drivers in user-defined cabinets
 - by creating cluster of cabinets from user-defined geometrical configuration
- For DART Design by solving both direct & inverse problems
 - Starting from voltage, it provides SPLs, diaphragm responses and electric currents
 - Starting from specified SPLs, it provides diaphragm responses, electric currents and voltages
 - For a given number of independent specified voltage signals between controllers, each associated to a subset of cabinets, it provides the random or deterministic response of the system for analyzing wave interference effects within the generated wave field
 - The latter correlated pressure wave-field can be exported in SEA+ software for computing effects of spacecraft response to the specific DART field
- For Anti-sound analysis and control
 - Allow investigation of potential ANC solutions based on anti-sound speakers
- For more information contact: info@interac.fr

